3. Where Does My Drinking Water Come From And How Is It Treated?

Your drinking water comes from surface water or **ground water**. The water that systems pump and treat from sources open to the atmosphere, such as rivers, lakes, and reservoirs is known as surface water. Water pumped from wells drilled into underground aquifers, geologic formations containing water, is called ground water. The quantity of water produced by a well depends on the nature of the rock, sand, or soil in the aquifer from which the water is drawn. Drinking water wells may be shallow (50 feet or less) or deep (more than 1,000 feet). More water systems have ground water than surface water as a source (approx. 147,000 v. 14,500), but more people drink from a surface water system (195 million v. 101,400). Large-scale water supply systems tend to rely on surface water resources, while smaller water systems tend to use ground water. Your water utility or public works department can tell you the source of your public water supply.

How Does Water Get To My Faucet?

An underground network of pipes typically delivers drinking water to the homes and businesses served by the water system. Small systems serving just a handful of households may be relatively simple, while large metropolitan systems can be extremely complex—sometimes consisting of thousands of miles of pipes serving millions of people. Drinking water must meet required health standards when it leaves the treatment plant. After treated water leaves the plant, it is monitored within the distribution system to identify and remedy any problems such as water main breaks, pressure variations, or growth of microorganisms.

How Is My Water Treated To Make It Safe?

Water utilities treat nearly 34 billion gallons of water every day. The amount and type of treatment applied varies with the source and quality of the water. Generally, surface water systems require more treatment than ground water systems because they are directly exposed to the atmosphere and runoff from rain and melting snow.

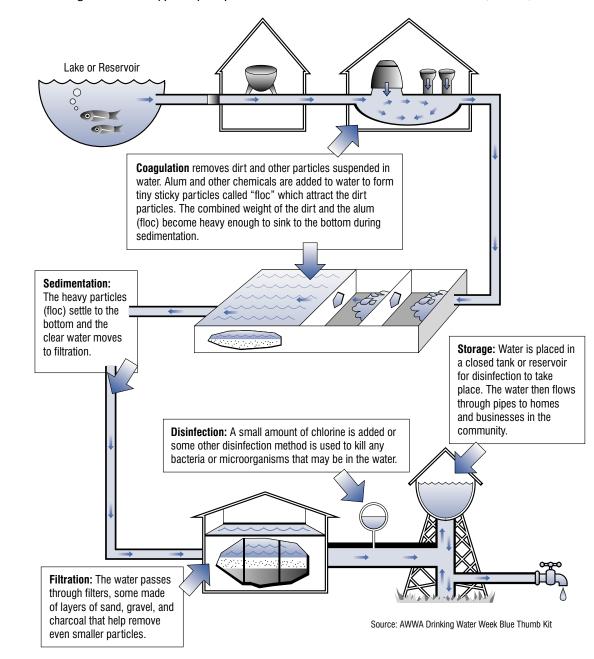
Water suppliers use a variety of treatment processes to remove contaminants from drinking water. These individual processes can be arranged in a "treatment train" (a series of processes applied in a sequence). The most commonly used processes include coagulation (flocculation and sedimentation), filtration, and disinfection. Some water systems also use ion exchange and adsorption. Water utilities select the treatment combination most appropriate to treat the contaminants found in the **source water** of that particular system.

Coagulation (Flocculation & Sedimentation):

Flocculation: This step removes dirt and other particles suspended in the water. Alum and iron salts or synthetic organic polymers are added to the water to form tiny sticky particles called "floc," which attract the dirt particles.

All sources of drinking water contain some naturally occurring contaminants. At low levels, these contaminants generally are not harmful in our drinking water. Removing all contaminants would be extremely expensive, and in most cases, would not provide increased protection of public health. A few naturally occurring minerals may actually improve the taste of drinking water and may even have nutritional value at low levels.

Sedimentation: The flocculated particles then settle naturally out of the water.


Filtration:

Many water treatment facilities use filtration to remove all particles from the water. Those particles include clays and silts, natural organic matter, precipitates from other treatment processes in the facility, iron and manganese, and microorganisms. Filtration clarifies the water and enhances the effectiveness of disinfection.

SDW Hotline: 800-426-4791

Water Treatment Plant

Follow a drop of water from the source through the treatment process. Water may be treated differently in different communities depending on the quality of the water which enters the plant. Groundwater is located underground and typically requires less treatment than water from lakes, rivers, and streams.

Disinfection:

Disinfection of drinking water is considered to be one of the major public health advances of the 20th century. Water is often disinfected before it enters the distribution system to ensure that dangerous microbial contaminants are killed. Chlorine, chlorinates, or chlorine dioxides are most often used because they are very effective **disinfectants**, and residual concentrations can be maintained in the water system.

Water System Filtration Tank

Why Is My Water Bill Rising?

The cost of drinking water is rising as suppliers meet the needs of aging infrastructure, comply with public health standards, and expand service areas. In most cases, these increasing costs have caused water suppliers to raise their rates. However, despite rate increases, water is generally still a bargain compared to other utilities, such as electricity and phone service. In fact, in the United States, combined water and sewer bills average only about 0.5 percent of household income.²

Disinfection Byproducts

Disinfection of drinking water is one of the major public health advances of the 20th century. However, sometimes the disinfectants themselves can react with naturally occurring materials in the water to form unintended byproducts, which may pose health risks. EPA recognizes the importance of removing microbial contaminants while simultaneously protecting the public from disinfection byproducts, and has developed regulations to limit the presence of these byproducts. For more information, see www.epa.gov/safewater/mdbp.html.

Water passes through charcoal, sand, and gravel layers in a water system's filtration tank.

¹ Protect Your Drinking Water, 2002.

² Congressional Budget Office Study: Future Investment in Drinking Water & Wastewater Infrastructure, 2002.